Indian Institute of Information Technology Allahabad Discrete Mathematical Structures (DMS)
 Tentative marking scheme of C2 Review Test

Program: B.Tech. $2^{\text {nd }}$ Semester (IT)
Date: May 31, 2023

Full Marks: 20
Time: 10:05 AM - 10:50 AM

1. Check whether the following statements are true or false. Give a proper justification.
(a) If H is a commutative subgroup of a group G, then H is a normal subgroup of G.
Solution: False. $H=\{I,(1,2)\}$ is a commutative subgroup of the symmetric group S_{3}, but H is not normal because (13) $H=$ $\{(13),(123)\} \neq H(13)=\{(13),(132)\}$.
(b) Let $\mathbb{R}^{+}=\{x \in \mathbb{R} \mid x>0\}$. Let $(\mathbb{R},+)$ and $\left(\mathbb{R}^{+},.\right)$be groups. Then the map $\phi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+},.\right)$defined as $\phi(x)=e^{x}$ is a homomorphism.
Solution: True. $\phi(x+y)=e^{x+y}=e^{x} e^{y}=\phi(x) \phi(y)$.
(c) $2 \mathbb{Z} \cup 3 \mathbb{Z}$ is a subring of \mathbb{Z}.

Solution: False. Let $2,3 \in 2 \mathbb{Z} \cup 3 \mathbb{Z}$. Then $2+3=5 \notin 2 \mathbb{Z} \cup 3 \mathbb{Z}$. [2]
2. Show that the complete bipartite graph $K_{3,3}$ is non-planar.

Solution: We know that for a connected and planar graph with no cycles of length three, we have $e \leq 2 v-4$.
Clearly, $K_{3,3}$ is connected and has no cycles of length three with $e=$ $9, v=6$. This gives $9 \leq 2 * 6-4=8$, a contradiction.
3. Show that if a simple graph G is isomorphic to its complement \bar{G}, then G has either $4 k$ or $4 k+1$ vertices for some natural number k.
Solution: Since G is isomorphic to its complement \bar{G}, they have the same number of edges, i.e., $E(G)=E(\bar{G})$.
Note that $E(G)+E(\bar{G})=\frac{n(n-1)}{2}$.
Then $E(G)=\frac{n(n-1)}{4}$. This is only possible if n or $n-1$ is divisible by 4 .
4. Prove that among any three distinct integers, we can find two, say a and b, such that the number $a^{3} b-a b^{3}$ is a multiple of 10 .
Solution: Denote $E(a, b)=a^{3} b-a b^{3}=a b(a-b)(a+b)$. Observe that if a and b are both odd or even then $a+b$ is even, and if one is odd and other is even then $a-b$ is even, it follows that $E(a, b)$ is always even. [1]

Hence we only have to prove that among any three integers, we can find two, a and b, with $E(a, b)$ divisible by 5 . If one of the numbers is a multiple of 5 , the property is true.

If not, consider the pairs $\{1,4\}$ and $\{2,3\}$ of residues classes modulo 5 . By the Pigeonhole Principle, the residues of two of the given numbers belong to the same pair. These will be a and b. If $a \equiv b(\bmod 5)$ then $a-b$ is divisible by 5 , and so is $E(a, b)$. If not, then by the way we defined our pairs, $a+b$ is divisible by 5 , and so again $E(a, b)$ is divisible by 5 . [2]
5. Let S_{3} denote the group of all permutations on set $X=\{1,2,3\}$.
(a) Find the order of all the elements of S_{3}.

Solution: We know that $S_{3}:=\{I,(12),(13),(23),(123),(132)\}$. Here $o(I)=1, o((12))=2, o((13))=2, o((23))=2, o((123))=3$ and $o((132))=3$.
(b) Write down all the (left) cosets of $H=\{I,(1,2)\}$ in S_{3}.

Solution: $I H=(12) H=\{I,(1,2)\}$
(13) $H=(123) H=\{(1,3),(123)\}$, and
(23) $H=(132) H=\{(2,3),(132)\}$.

